PROBLEM SET 7. DUE THURSDAY, 14 SEPTEMBER

Supplementary reading. Simmons, sections 7.2 and 10.7.

1. (3pts) Compute the following definite integrals.
 (a) \(\int_0^1 x(x^2 + 2)^3 \, dx \)
 (b) \(\int_0^1 xe^x \, dx \)
 (c) \(\int_0^2 \sqrt{4 - x} \, dx \)

2. (3pts) Find the geometric area of the following functions on the corresponding interval.
 (a) \(f(x) = 6 - 3x^2 \) on \([0, 2]\)
 (b) \(f(x) = 3x^2 - 3 \) on \([0, 3]\)
 (c) \(f(x) = 9x^2 - 36 \) on \([0, 4]\)

3. (8pts) Compute the following integrals using integration by parts.
 (a) \(\int \ln(x) \, dx \)
 (b) \(\int x^2e^x \, dx \) (You will have to do the process twice in this example.)
 (c) \(\int xe^{ax} \, dx \) for a real number \(a \)
 (d) \(\int (\ln(x))^2 \, dx \)

4. (3pts) Find the (geometric) area between the following curves and the \(x \)-axis.
 (a) \(f(x) = 27 - 3x^2 \)
 (b) \(f(x) = 12 - \frac{3}{2}x^2 \)
 (c) \(f(x) = -2x - \frac{x^2}{2} \)

5. (3pts) Find the area of the region bounded by the two curves given.
 (a) \(f(x) = \cos(x) \) and \(g(x) = \sin(2x) \) on \([0, \frac{\pi}{2}]\) (Hint: \(f(x) = g(x) \) when \(x = \frac{\pi}{6} \)).
 (b) \(f(x) = x^2 - 4x \) and \(g(x) = 2x \)
 (c) \(f(x) = 7 - x^2 \) and \(g(x) = 2 \)