Problem Set 4 Solutions

1. (a)
 \[y(x) = \cos(x) \sin(x) \]
 \[y'(x) = \frac{1}{32} \sin(2x) \]
 \[y''(x) = 5\cos(x) \sin(x) \sin^2(x) \cos^2(x) = \frac{5}{16} \sin^4(2x) \cos(2x) \]

(b)
 \[y'(x) = \frac{1}{\ln(5)} \left[\frac{4x}{2x^2 - 6} + \frac{1}{x + 7} \right] \]

(c)
 \[y'(x) = -8x \tan(4x^2) \]

(d)
 \[y'(x) = e^{\tan(x)} \sec^2(x) \]

(e)
 \[y'(x) = -\frac{1}{x^2} \cos\left(\frac{1}{x}\right) \]

2. (a)
 \[y = x^3 + x^2 + 5x + 4 \]
 \[y' = 3x^2 + 2x + 5, \text{ which doesn't vanish for any real } x \]
 \[y'' = 6x + 2, \text{ which vanishes at } x = -\frac{1}{3} \]
 The graph has no minima, since \(y' \) doesn't vanish, and it is always increasing. for \(x < -\frac{1}{3} \), the graph curves down (it’s concave), and for \(x > -\frac{1}{3} \) it curves up (it’s convex).

(b)
 \[y = e^{x^2} \]
 \[y' = 2xe^{x^2} \]
 \[y'' = (4x^2 + 2)e^{x^2} \]
 The derivative vanishes just at \(x = 0 \). The value of \(y'' \) is greater than 0 everywhere so the graph curves up (it’s convex).
(c)

\[y = \frac{x - 3}{x^3 - 3x^2 - 9x + 27} = \frac{x - 3}{(x - 3)(x^2 - 9)} = \frac{1}{x^2 - 9} = \frac{1}{6} \left(\frac{1}{x - 3} - \frac{1}{x + 3} \right) \]

\[
y' = -\frac{2x}{(x^2 - 9)^2} = \frac{1}{6} \left(-\frac{1}{(x - 3)^2} + \frac{1}{(x + 3)^2} \right) \]

\[
y'' = \frac{1}{3} \left(\frac{1}{(x - 3)^3} - \frac{1}{(x + 3)^3} \right) \]

The derivative vanishes only at \(x = 0 \). The second derivative is negative at \(x = 0 \), so there is a local maximum there. The function is increasing for negative \(x \) and decreasing for positive \(x \). There are vertical asymptotes at \(x = \pm 3 \). The function tends to 0 as \(x \) goes to \(\pm \infty \).

3. Let \(x \) denote the number of dollars the price is reduced. The new sale price is \(16 - x \) dollars and the profit per book is \(10 - x \) dollars. The total number of books sold is estimated to be \(180 + 30x \) so the total profit is

\[
\text{Profit} = (180 + 30x)(10 - x). \]

The derivative is

\[
\text{Profit}' = -(180 + 30x) + (10 - x)30 \]

and it vanishes at \(x = 2 \). The optimal price of the book is therefore

\[
\text{Best Price} = \$14 \]
(if x didn’t work out to be a whole number we would have to round up or down, depending on which gave the most profit)

4. If the Height of the box is \(x \) centimeters, then the base of the box will have dimensions \((10 - 2x)\) by \((20 - 2x)\). So the total volume is,

\[
Volume(x) = x(10 - 2x)(20 - 2x) = 4(x^3 - 15x^2 + 50x)
\]

Differentiating,

\[
Volume'(x) = 4(3x^2 - 30x + 50)
\]

Using the quadratic formula, we find this vanishes when

\[
x = 5 \pm \frac{5}{3}\sqrt{3}
\]

Since \(10 - 2x \) has to be positive, \(x \) must be less than 5, so \(x \) must be \(5 - \frac{5}{3}\sqrt{3} \) which is approximately 2.11. Plugging in to the volume formula, we get

\[
\text{Max. Volume} = 192.45 \text{ cm}^3
\]